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Introduction

A century ago the spatial requirements for a molecule to act
as a specific drug were compared to the requirements for a
key fitting into a given lock. In recent decades molecular
modeling techniques have established and refined this sim-
ple picture. Much effort has been devoted to determining

the shape of the lock by X-ray structure determination of
receptor proteins in order to then be able to select the proper
key, a ligand that will fit into the active site of the receptor.

However, the number of receptors where the 3D struc-
ture is known is still small compared to the number of known
receptors. It is quite clear that many proteins can never be
crystallized or their structure will dramatically change when
taken out of their natural environment, such as for mem-
brane proteins. In such a situation, other experimental tech-
niques such as NMR spectroscopy can be applied to derive
the 3D structure of a protein. However, for a long time we
will have to live with a situation where the 3D structure of
the receptor is not known.
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How can we then learn anything about the spatial require-
ments of a ligand to fit into such a receptor whose structure
is not known? Can we learn something about how a key should
look from a series of keys that fit into a certain lock? Can we
learn about the spatial and electronic requirements for a lig-
and by comparing a set of ligands that are known to bind to
the receptor of interest?

In this publication we will present a method that attempts
to extract the largest three-dimensional substructure that is
common to a set of molecules or ligands, much in the same
way as the comparison of a set of keys will give us the essen-
tial features necessary for a key to fit into a given lock.

The investigation of a series of ligands binding to the same
receptor is usually performed by defining the similarities
between the ligands through a pharmacophore pattern. A phar-
macophore defines the three-dimensional arrangement of
substructural units such as hydrogen bonding or hydrogen
accepting sites or hydrophobic areas in a molecule. Usually,
no more than three or four such sites are identified for the
definition of a pharmacophore in order not to make pharma-
cophore searches too time-consuming.

The pharmacophore pattern of a set of ligands can be de-
rived from the largest 3D substructure that these compounds
have in common. The methods initially developed for search-
ing for the three-dimensional maximum common substruc-
ture (MCSS) only worked with a single, rigid conformation,
not taking into account the conformational flexibility of the
ligands.[1–4] The first detailed study of distance-based meth-
ods for 3D similarity searching was published by Pepperrell
and Willett.[5] More recently Sheridan et al.[6] reported on
distance based methods using several conformations for each
structure. Angle-based and fragment-based methods[7, 8] like
those of Fisanick et al.[9] have also been used to calculate
3D similarities. Overviews on 3D substructure and pharma-
cophore searching are contained in several sections of the
Encyclopedia of Computational Chemistry.[10-13]

In our group, we have developed an approach for MCSS
search that is based on atom mappings. The approach was
initially developed to be applied to the constitution of a mol-
ecule as given by a connection table.[14] However, it was
shown that this method can be extended to the 3D structure
of a molecule including conformational flexibility of the lig-
ands.[13, 15]

In order to perform the search for the largest three-dimen-
sional substructure, a universal access to the 3D structure of
molecules is necessary. Such an approach can be provided
by the automatic 3D structure generator CORINA.[16 –18]
All 3D structures investigated in this report have been ob-
tained by CORINA which can provide a single low-energy
conformation of any organic molecule.

The 3D substructure search starts with one conformation
for each structure and investigates the conformational flex-
ibility during the optimization process. A “query-directed”
conformational search technique was implemented [14] by
combining evolutionary theories with a numerical optimizer.
[19] This hybrid technique of a genetic algorithm combined
with a directed tweak method based on numerical optimiza-
tion is a flexible search system that accounts for conforma-

tional flexibility by rotation around single bonds during the
optimization process.

This hybrid method, called GAMMA (genetic algorithm
for multiple molecule alignment) has been extended to the
simultaneous superimposition of a set of conformationally
flexible molecules. An approach was chosen that is able to
include specific knowledge to the problem. Thus, special
pharmacophore features have been implemented to explore
the physicochemical atom properties, such as electronegativi-
ties or atomic charges, can be chosen as matching criterion.
It is possible to preselect atoms that have to or should be part
of the substructure. Rotatable bonds are automatically rec-
ognized or alternatively can be selected by the user and last
but not least entire molecules can be chosen as rigid or flex-
ible.

General principles of the genetic algorithm

Genetic algorithms (GAs) represent robust optimization meth-
ods that are based on the mechanisms of natural selection
and genetics.[20–23] They can solve problems involving large
search spaces efficiently, and thus, can even be applied to
problems beyond the reach of classical exhaustive search
methods.[21,22] A GA imitates nature’s methods for adapt-
ing to a changing environment. Optimization therefore does
not start from a single point, but from a population of start-
ing points that is randomly generated. These starting points

Figure 1 Outline of a complete GA run showing the appli-
cation of the genetic operators onto an initial population of
superpositions. The new generation is submitted to the di-
rected tweak mechanism, which improves on the geometric
fit of the individuals
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correspond to the chromosomes or individuals of a popula-
tion representing potential solutions to the search problem.
The individuals must be represented by a special coding of
the parameters of the function to be optimized. Quite often a
bit string is chosen for this purpose. In the present case, we
have chosen two chromosomes, one representing the
superposition of atoms, the other the torsional angles. The
genetic operators selection, mutation, and crossover are ap-
plied iteratively to the population. In the method presented
here, two additional operators called creep and crunch that
are tailored to the specific problem have been implemented.
In the search for the maximum 3D common substructure two
conflicting criteria must be optimized: the number of match-
ing atoms between two molecules has to be maximized,
whereas the deviations in the coordinates of the superimposed
atoms must be minimized. These two criteria are monitored
separately by a so-called Pareto fitness. The Pareto fitness is
not based on one fitness function but on several parameters
that are treated independently of each other. After the selec-
tion process, the genetic operators are applied to the chro-
mosomes and a new population forms the offspring genera-
tion. One complete GA run begins with the initialization of
the individuals and ends with obtaining one set of optimized
solutions after cycling through all generations. Figure 1 shows
the general outline of the genetic algorithm.

Genetic algorithms are not based on a deterministic pro-
cedure. Therefore, optimization by a GA does not necessar-
ily arrive at the optimum solution. In order to alleviate this
problem, an additional method, the directed-tweak [18] pro-
cedure was implemented to match the conformations of the
molecules to be overlaid. The geometric fitness of the off-
spring population is assessed by minimizing differences in
the conformations during the directed tweak procedure. The
result is only part of the fitness values, the geometry of the

molecules is not changed. This helps to prevent the loss of
genetic variety during the optimization process. The actual
conformations are changed once by a directed tweak optimi-
zation after the last generation. Usually more than one GA
run is performed to arrive at an optimum solution.

The chromosomes

A major task in adapting a genetic algorithm to a specific
problem is the encoding of the individuals of the population,
i.e., the representation of the genetic information by chro-
mosomes.[19] We have chosen an approach that represents
an individual by two independent chromosomes. The first
chromosome consists of an atom mapping that is coded by
integers and represented as a fixed-length linked match list
(Figure 2). The match list is defined by the number, n, of
molecules to be superimposed and the size of the substruc-
ture N (number of complete match tupels, Figure 2: N = 3).

The match list is a fixed-length linked list comprising all
individuals. Each atom may appear only once. To initialize
the match lists, first, all permutations of atom mappings are
generated. The maximum number of possibilities is NxNyNz,
where Nx is the number of atoms in molecule x.

In this process, different criteria can be chosen for the
atoms that are matched. Either one requires matching atoms
to have the same atomic number or to have a certain physico-
chemical property, e.g., partial atomic charge, in a given in-
terval.

A list of matching atoms is built by randomly selecting
match tupels from the initialized complete set of match tupels.
The number of individuals to be built, i.e., the size, i, of the
population is set at the beginning. If an atom is doubly refer-
enced, i.e., an atom appears twice in the match list, after
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random combination of match tupels, this atom is changed
into an atom that is not yet part of the list, or, alternatively,
into a zero mapping, (i.e., it is removed from a match list).
Zero mappings are marked by a dash in Figure 2.

The second chromosome consists of a bit string repre-
senting torsional angles in the flexible molecules (Figure 3).
Each single bond that has at either end at least one multi-
atom substituent (e.g. a methyl group), but is not a ring bond,
is defined as flexible. Each torsional angle is binary coded
by 8 bits. Thus, the torsion angles of –180° up to +180° are
represented by integer values of 0 to 255. The integer values
are then binary Gray-coded.[19] Gray-coding is a specific
presentation of an integer value by a bit string. The smallest
possible change of the angles is 1.4° (360/256). All torsional
angles are concatenated to one bit string. Thus, each bit string
of torsional angles has the length of 8ntor, with ntor being the
number of torsional angles in all molecules (in Figure 3, ntor
= 1).

The two chromosomes, the match list and the bit string of
torsion angles, represent together one individual. Several in-
dividuals build the population of one generation.

Optimization criteria

The search for the MCSS of a set of molecules takes into
account two optimization criteria: the size of the substruc-
ture, as given by the number, N, of matches (Figure 3), and
the geometric fit of the matching atoms as represented by a
distance parameter (Figure 4). The distance parameter, D,
consists of the sum of the squared differences of correspond-
ing atom distances in the molecules.

D is related to the root mean square (rms) error of the
distances of corresponding atoms in an optimized superim-
position. This means that high D-values correlate with a bad
geometric fit, as high rms-values do. The D-value has been
shown to be sufficient to evaluate the geometric fit during
the optimization process, above all because the calculation
does not take large computation times. The D-value is a rela-
tive fitness value, in contrast to the rms-value that is absolute
and can be used for the comparison of superimpositions of
different structures. The rms value is, however, subject to
large changes even if the mapping changes only slightly.
Therefore, the distance value, D, is better adapted to the spe-
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cific use during a GA optimization than the rms value. The
rms value of the obtained superimposition is calculated only
once at the end of each GA run in order to present the results.

Genetic and non-genetic operators

Mutation The genetic operators change the two chromo-
somes of the individuals, the match list and the coding of the
torsional angles, in a different manner.

The mutation operator working on the match lists ran-
domly changes atom tupels (Figure 5). To mutate the match
list of a superimposition of n molecules, n-1 mutation points
are selected at random (Figure 5). The atoms of all molecules
except those of the first (largest) molecule in the match list
can be mutated. The corresponding atom of a match tupel
(for the first mutation, an atom of the second molecule, for
the second mutation an atom of the third molecule, etc.) is
mutated by obeying the following boundary condition: none
of the atoms is allowed to appear more than once in the re-
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sulting match list and the criterion which atoms are allowed
to be matched has to be taken into account. Hence, the atom
considered must be changed into one that is not yet in the
match list. If all atoms of a molecule are already referenced,
the atom is changed into a zero mapping. Zero mappings can
also be introduced randomly (see 1. mutation in Figure 5: the
match tupel 1,a,- is mutated to 1,-,-).

Mutation in the chromosome representing the torsion an-
gles inverts one bit of a binary coded torsion angle string (1
into 0 or vice versa). As mentioned before, each chromo-
some of the torsional angles is a bit-string of length 8ntor (ntor
= number of rotatable bonds in all molecules). One mutation
is performed for each angle. The first mutation point is se-
lected randomly and each additional point has an 8 bit dis-
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tance to the first one. Thus, an equal distribution of the muta-
tions on the torsional angles is guaranteed.

Crossover The crossover operator exchanges random parts
of two individuals, i.e., partial substructures, and combines
partial solutions of the MCSS search problem in a new, and
potentially better, way. Two points are chosen randomly in
the match lists of two parental individuals (Figure 6).[24]
The information string that is to be crossed is contained in
between these two points. Each partial list must be of equal
length and is copied to the tail of the other parental indi-
vidual. In this step, double references may be introduced that
later have to be deleted: If an atom of molecule I appears
twice in the match list, the corresponding original match pair
must be replaced by the new one that was copied to the tail
(e.g. in Figure 6 match tupel 4,e,- replaces 4,-,- and 3,c,A
replaces 3,a,C). Any double references remaining after this
process in molecule II and III are replaced by randomly cho-
sen ones conforming to the constraints (the matching crite-
ria). If there are no more atoms that obey these restrictions, a
zero mapping must be introduced. This procedure ensures
that the match lists always have the same length and that
each atom is referenced only once.

The crossover operator working on the representation of
the torsion angles is a one-point crossover. One point must
be chosen randomly at the same position in the two parental
strings. Crossover exchanges two parts of the two chosen
parental strings of torsion angles. This leads to new confor-
mations for which the geometric fit has to be assessed.

Two non-genetic operators: creep and crunchTwo addi-
tional operators were developed to improve the efficiency of

the GA: The creep and the crunch operators. These operators
do not act stochastically like the genetic operators crossover
and mutation but make use of knowledge specific to the prob-
lem to be solved, the MCSS search problem.[25] Hence, they
are called ‘knowledge-augmented operators’.[19]

The creep operator increases the size of the substructure
by adding a matching tupel of atoms to the match list while
obeying restrictions imposed by the spatial arrangement of
the atoms (Figure 7). The new matching atom tupel must not
cause a large increase in the rms value of the original match.
In this way, the creep operator leads to a “hill climbing”
mechanism in the GA.

The crunch operator (Figure 7) acts as an antagonist to
the creep operator in reducing the size of the substructure.
The goal of the crunch operator is to eliminate match pairs
that are responsible for bad geometric distance parameters.
This operation should help to avoid the search becoming
trapped in local minima during the optimization process.

The Pareto fitness of individuals

The MCSS search is a multi-criteria optimization problem,
where the notion of optimality is difficult to define. Two main
principal parameters contribute to the fitness of a superim-
position and have to be optimized: the size of the substruc-
ture and its geometric fit. The substructure size must be as
large as possible, whereas the deviation in the positions of
the superimposed atoms should be as low as possible. These
criteria are contradictory as a larger substructure may de-
crease the geometric fit. An optimum must be found that takes
both criteria into account. Vilfredo Pareto developed a con-
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cept for solving multi-criteria optimization.[19, 20] Pareto
optimization means that an optimized state is reached if none
of the parameters can be improved further without making
another one worse.

Pareto optimality applied to the MCSS search problem in
a three-dimensional space results in simultaneously maxi-
mizing the size of the substructure and optimizing the geo-
metric fit. This does not result in obtaining only one prob-
ably perfect substructure but for each possible size of the
common substructure an optimal geometric fit is produced.

The application of Pareto optimization to the superimpo-
sition of vinylcyclobutane and propylcyclobutane is shown
in Figure 8. The atoms marked in gray are those of the com-
mon substructure. The result of a Pareto optimization is a set
of common substructures for which the geometric deviation
cannot be minimized further. Four different superimpositions
are shown in Figure 8, three of them corresponding to Pareto
optimality. Superimposition I dominates superimposition IV
as it has a smaller rms value for the same number of match-
ing atoms (Figure 8). In this sense, superimposition I repre-
sents a Pareto optimal solution because no other substructure
can be found which has a better geometric correspondence.
Superimpositions II and III are also members of the Pareto
set and no other superimpositions having the same sizes and
better geometric fits can be found. Taken together,
superimpositions I, II, and III represent the set of equivalent
Pareto solutions and none dominates the other.

For each specific superimposition a Pareto diagram can
be calculated. It presents the development of the rms error
with the size, N, of the substructure during the GA optimiza-
tion runs. Figure 9 shows the Pareto diagram for the super-
imposition of two angiotensin antagonists losartan and L-
158,809 (Figure 10).[26] Forty GA optimization runs were
performed. The figure shows the set of Pareto solutions con-
sisting of one superposition with lowest rms for each number
of matching atoms. From among this Pareto optimality set,
the superimposition with a substructure size of 18 and an rms
error of 0.15 Å might be chosen to be the best one. The cor-
responding point in the Pareto diagram is indicated by a cir-
cle.

This superimposition of losartan and L-158,809 extracted
from the Pareto diagram is shown in Figure 10.
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Restricted tournament selection

Selection drives the optimization and causes evolutionary
pressure: The selection operator moves individuals from one
generation into the next one based on their relative fitness.
This corresponds to Darwin’s evolution theory of ‘survival
of the fittest’. Most of the GAs described in literature make
use of the procedure of roulette wheel selection:[21, 22, 27–
29] Each individual is assigned to a sector of a roulette wheel
with the sector being proportional to the fitness of the indi-
vidual: The better the fitness the larger the sector. Hence, the
size of the sector corresponds to the probability of an indi-
vidual being selected as a parent of the next generation. In

order to prevent convergence to a suboptimal solution the
population must consist of diverse and relevant members and
the rapid decrease of genetic variety is to be prevented. We
have decided to choose a special selection type to prevent
premature loss of genetic information that might occur in a
roulette wheel selection procedure. This alternative is called
restricted tournament selection (RTS) (Figure 11).[27] Re-
stricted tournament selection is found to be useful for solv-
ing multimodal problems and is a modification of a binary
tournament selection. In a binary tournament selection, tour-
naments for a place in the new population are held between
pairs of individuals chosen at random from the entire popu-
lation. In this sense “restricted” means that tournaments are
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not made between any individuals chosen at random from
the entire population but only between similar individuals.

Thus, restricted tournament selection (Figure 11) is based
on the concept of local competition. The winners of each
tournament are moved into the next generation. An element I
is chosen randomly from the basic population and changed
by the operators of the GA into a new element I’. For each I’
a small population with an optional member size Srts is se-
lected from the basic population. The individual II that is
most similar to I’ among the chosen individuals is saved. I’
must then compete with II for a place in the new population.
This form of binary tournament restricts an individual from
competing with individuals too different to it. Hence, the
variety in the information is maintained. A further advantage
of the described mechanism of RTS is the possibility for the
so-called continuous selection. A continuous selection allows
individuals from different generations (e.g. II and I’ in Fig-
ure 11) to compete with each other.

Matching the conformations - directed tweak

The directed tweak method reported by T. Hurst [18] was
implemented in our procedure. The objective was to com-
bine non-deterministic genetic mechanisms with a numeri-
cal optimizer in order to improve potential solutions. After
each generation, the geometric fit of each individual or su-
perimposition is improved by mapping torsional angles by
the directed tweak method.

The technique makes use of the Davidon-Fletcher-Powell
optimizer [30] to minimize differences in the conformations
(Figure 12). The squared differences of the distances of cor-
responding atom pairs (i.e., 1,4 and a,c in Figure 12) are used
to minimize the differences in the geometry of the superim-
posed structures by changing torsion angles. The superim-
positions are not limited to low-energy conformations. This
allows one to find also conformations of ligands that corre-
spond to those found in the binding of a ligand to a receptor
but do not correspond to low-energy conformations in the
free state. However, an energy penalty value is added to the
distance parameter D if a close contact of non-binding atoms
is found in a conformation.

The superimposition of methylcyclohexane and n-
butylcyclopropane (Figure 13) shows the adaptation of the
conformations of two molecules during the optimization proc-
ess. The dihedral angle c-d-e-f of n-butylcyclopropane fits
onto the rigid cyclohexane conformation after rotation around
the bond d-e.

The optimization process covers the entire conformational
space of bond d-e during the generations. Figure 13 shows
the distribution of the dihedral angle c-d-e-f of n-
butylcyclopropane during one run of the genetic algorithm.
The optimization culminates most often in an angle of -120°
(or 180°-120° = 60°), which corresponds to the conforma-
tion of cyclohexane (dihedral angle 2-3-4-5).

Special features of the program

Close contact check of van der Waals radii

The algorithm treats atoms as points that have no spatial ex-
pansion. To prevent conformations from having an overlap
of van der Waals radii, the distances of non-bonded atoms
are calculated and compared with the sum of the correspond-
ing van der Waals radii (Figure 14).

If a close contact is found, the distance parameter D is
multiplied by a penalty factor. Thus, the conformation pen-
alty is part of an optimization criterion. Consequently, indi-
viduals representing an unfavorable conformation obtain a
high D parameter (bad geometric fitness) and will never domi-
nate in a Pareto tournament.

Matching criteria

Many surface properties, e.g., hydrogen bonding potential,
electrostatic potential, or hydrophobicity, are responsible for
high receptor binding affinities. These binding properties are
mainly based on dipole-dipole interactions and are related to
various electronic effects. Thus, we have built into our pro-
cedure the option that criteria other than the atomic number,
such as physicochemical properties of atoms, ranges of par-
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Figure 14 Close contact
check of van der Waals radii
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Chemical structure Name IC50 human [µM]

A/B/C/D-ring systems

HO

N

N

Imidq, 1 0.04

N

HO

OH

MH61 0.077

HO

N

OH

MH55 0.17

Table 1a Cytochrome
P450c17 inhibitors of the A/
B/C/D-ring systems and their
IC50 Human-values (progester-
one, 25 µM)

tial atomic charges (sigma, qσ, pi, qπ, or total qtot), elec-
tronegativity, χ, or polarizability, α, can be chosen as restric-
tions in the superimposition. Other atom properties, such as
descriptors whether atoms are in aromatic and non-aromatic
rings, or are ring or non-ring atoms, can also be selected as
mapping conditions. These physicochemical parameters are
calculated by the program package PETRA.[31, 32] The at-
oms to be overlaid must conform to the given matching crite-
rion or interval of the physicochemical property. For exam-
ple, if the matching criterion is chosen to be total atomic
charges, qtot, and the interval selected to be qtot = ± 0.05 e,
then for an atom of the first molecule with qtot = -0.2 e, only
atoms in the interval of qtot = [-0.25, -0.15] are allowed to
build match tupels with this first atom.

Cytochrome P450c17-inhibitors

The cytochrome P450c17 enzyme (17-α-hydroxylase/C17-
20 lyase) is a key enzyme for the androgen and glucocorti-
coid biosynthesis.[33] Like most cytochrome P450
isoenzymes, P450c17 also has heme as prosthetic group. Sub-
stances conjugate to this enzyme by coordinating to the cen-
tral iron atom at one end and by a hydrogen bond at the other
end of their skeleton. Thus, substances with a high affinity to
the enzyme should have a free electron pair (e.g. a nitrogen
atom) and at least one hydrogen bond acceptor or donor. In-
hibition of the 17-α-hydroxylase/C17-20 lyase is a promis-
ing concept for the treatment of prostate carcinoma. How-
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Chemical structure Name IC50 human [µM]

A/B-ring systems

N
HO

BW13, 2 0.036

N

MeO

BW61, 4 0.074

N

OMe

BW62, 5 0.085

A/C-ring systems

N

OH

N

HO
BW112, 3 0.087

N

OH

N

BW95 0.13

N

NH2

N

BW99 0.21

Table 1b Cytochrome
P450c17 inhibitors of the A/
B- and A/C-ring systems and
their IC50 Human-values (pro-
gesterone, 25 µM)
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ever, up to now no inhibitors have been found with an ac-
ceptable selectivity for the P450c17 enzyme.[34, 35]

P450c17 inhibitors can be separated into three structural
subclasses corresponding to their steroidal skeleton: A/B/C/
D-ring systems (steroids), A/B-ring systems (naphthalene
compounds) and A/C-ring systems (biphenyl compounds).
In Table 1 the chemical structures, their names, and their
IC50human-values (progesterone, 25 µM)[33, 34] are given.
Imidq, 1, is the most active steroidal ligand with a rather

rigid skeleton. BW13, 2, and BW112, 3, are conformation-
ally flexible ligands, with 2 the most active 3,4-dihydronaph-
thalene ligand, and 3 the most active biphenyl ligand.

We will illustrate with this example different options of
the program that can be used to gain more insight into the
structural requirements for a ligand to fit and bind into the
pocket of the receptor. It will be shown how information al-
ready known can be used to impose restrictions on a program
run in order to try to confirm these hypotheses.

A B

C D Fe

H-bonding
conjugation to Fe /

3+ 2+

lipohilic
region

lipohilic
region

Figure 15 The steroidal skel-
eton and the coordinations of
its structural parts inside the
P450c17 binding pocket

N1

N1
N2

3.7Å

O1

O1

0.36Å

3.34Å

1.46Å

1.43Å

1.20Å

rms = 0.50Å
size = 16

rms = 0.91Å
size = 16

rms = 1.14Å
size = 16

Fe

O

H

H

Figure 16 The superimposi-
tion of 1 (rigid) and 2 (flex-
ible). The required matching
atom pairs are marked by a
dashed circle. No restrictions
are required for the upper su-
perimposition, the matching
atom pair 1: N2/2:N1 is re-
quired for the middle super-
imposition, and 1: N2/2:N1

and 1: O1/2:O1 is required for
the lower superimposition
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The compounds shown coordinate through their basic ni-
trogen atom to the central iron atom inside the P450c17 en-
zyme and bind through a hydrogen bond acceptor (OH-, OMe-
, NR2-group) to a corresponding donor atom of the enzyme
binding pocket (Figure 15).

Knowledge-based superimpositions

First we will explore the overall geometric fit and try to find
out whether atoms necessary for binding can be located.

Structural homologies must be evaluated for the most ac-
tive compounds of each structural subclass (1, 2 and 3). Imidq,
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Pareto diagram of the superimposition of
imidq (rigid) and BW13 (flexible):

no restrictions

rms = 0.50Å
size N = 16

Pareto diagram of the superimposition of
imidq (rigid) and BW13 (flexible):

restriction: : N / : N15 16
2 1

rms = 0.91Å
size N = 16

Pareto diagram of the superimposition of
imidq (rigid) and BW13 (flexible):

restriction: : N / : N , : O / : O15 16 15 16
2 1 1 1

rms = 1.14Å
size N = 16

size N of the substructure size N of the substructure

size N of the substructure

rms [Å]

rms [Å] rms [Å]

Figure 17 The best Pareto diagrams of 40 GA experiments for the superimposition of imidq, 1 and BW13, 2 with different
restriction (see Figure 16)
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1, can provide a template for the superimposition with BW13,
2, and BW112, 3, because 1 has a comparatively rigid steroidal
skeleton. The conformation of 1 was set to be rigid during
the optimization process, whereas the conformations of all
other molecules were treated as flexible. During superimpo-
sitions not involving the steroid 1 both molecules were treated
as flexible.

The compounds of the three structural subclasses have
quite different numbers of atoms. Thus, an unbiased rigid
superimposition leads to results that do not consider any re-
quirements imposed by the three-dimensional structure of the
enzyme binding pocket. In Figure 16 three different
superimpositions of compound 1, an A/B/C/D-ring system
and 2, an A/B-ring system are shown. In all of the three
superimpositions, it was required that the atoms to be super-
imposed have the same atomic number. Always the best re-
sults of the 40 GA experiments are presented. The differ-
ences in the superimpositions result from the restrictions
imposed on the substructures to be matched. The first super-
imposition was calculated without any restrictions (Figure
16, top). The probability for each atom to be part of the sub-
structure was the same. The second superimposition requires
the alignment of the atom pair 1: N2/2:N1 (Figure 16, center).
The third superimposition, in addition, requires the atom pair
1: O1/2:O1 to match (Figure 16, bottom). Thus, knowledge
about a specific binding mode of the ligands inside the en-
zyme is taken into account by forcing important atom pairs
to match.

The restrictions lead to a decrease in the overall geomet-
ric fit. The rms values are 0.50 Å without any restrictions and
0.91 Å and 1.14 Å with restrictions. A potential reason for
the increase in the rms values are the different sizes of the
structures to be aligned. Without any restrictions, the smaller
molecule will fit onto any part of the larger molecule (Figure

16, top). In this case, BW13, 2, aligns exactly with the A/B/
C-ring of imidq, 1. This leads to a lower rms value, but ig-
nores the fact that similarities must be investigated at both
ends of the skeleton.

The Pareto diagrams of the best GA experiments out of
40 runs of all three superimpositions are shown in Figure 17.
Usually, the rms-value increases for increasing substructure
sizes. However, the Pareto diagrams of Figure 17 show that,
using random based genetic algorithms, it is possible to re-
ceive better geometric fits for larger substructures than for
smaller substructures.

A substructure size of 16 atoms was extracted for the com-
parison of the superimpositions. This number of atoms
presents the minimum with the largest number of matching
atoms of the Pareto diagram before a further increase in the
rms values.

The Pareto diagrams show that the rms values are lower
for all substructure sizes in the case where no restrictions
were imposed. Imposing restrictions onto the atoms to be
matched allows the investigation of the fit of the structures
by considering knowledge about pharmacophore parts of the
compounds.

Each nitrogen atom or oxygen atom of 1 and 2 coordi-
nates to corresponding parts inside the receptor binding
pocket. Thus, no large distances between the nitrogen atoms
or the oxygen atoms in a superimposition can be accepted. In
the lower superimposition of Figure 16 the distances are 1.20
Å (N-N) and 1.46 Å (O-O). Thus, a coordination to similar
positions inside the receptor binding pocket would be possi-
ble. Although, the superimpositions show for the entire struc-
tures a worse atomic fit, the hydrophobic parts are aligned
well onto each other. The importance of short distances of
the nitrogen atoms is higher than those of the oxygen atoms.
The nitrogen atoms coordinate to a fixed iron atom inside the

1.69Å

1.95Å

rms = 1.20Å
size = 16

1.60Å

2.21Å

rms = 1.34Å
size = 16

Figure 18 The superimposi-
tion of 1 (rigid) and 4 (flex-
ible, top) or 5 (flexible, bot-
tom). The restricted matching
atom pairs are marked by a
dashed circle. Top: 1: N2/4:
N2 and 1: O1/4: O1; bottom:
1: N1/5: N2, 1: O1/5: O1
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heme molecule. In contrast, the oxygen atoms bind to con-
formationally flexible parts of the enzyme through hydrogen
bonds (Figure 16, bottom) which have also degrees of free-
dom through rotation around the carbon-oxygen bond.

The three A/B-ring system compounds 2, 4, and 5 (naph-
thalene derivatives ) each have an oxygen atom on the A-
ring. However, the site of substitution is different in all three
cases. The next investigations should clarify whether, never-
theless, an alignment of ligands can be found that allows
superposition of the oxygen atoms. For this purpose, again,
the rather rigid steroid skeleton of 1 was kept rigid. In com-
pound 4, the oxygen atom of the 7-OMe group was required
to be superimposed onto the oxygen atom of the OH-group
of 1. In compound 5, the oxygen atom of the 5-OMe group
was superimposed onto the OH group of 1 (Figure 18).

Thus, although the oxygen atoms in the three naphtha-
lene derivatives 2, 4 and, 5 are positioned at three different
substitution sites (positions 6, 7, and 5, respectively), never-
theless in all three cases an alignment was found that was
able to superimpose the oxygen and nitrogen atoms.

However, the superimpositions of both 4 and 5 with 1 (rms
= 1.2 Å and 1.34 Å) lead to a lower geometric fit than the
superimposition of 1 with the 6-OH substituted dihydronaph-
thalene, 2 (Figure 16, rms = 1.14 Å). In addition, the dis-
tances of the nitrogen pairs (4: 1.69 Å, 5: 2.21 Å) and oxygen
pairs (4: 1.60 Å, 5: 1.95 Å) are relatively high. This decreased
fit of 4 and 5 onto 1 compared to the fit of 2 onto 1 is re-
flected by a decrease in biological activity.

The ligand 3 has two hydroxyl groups. The next investi-
gations explore whether GAMMA can provide information
as to which one of the two hydroxyl groups is better suited
for binding. The superimposition of imidq, 1, (A/B/C/D-ring
system) and BW112, 3, (A/C-ring system) is shown in Fig-

ure 19. 3 and 1 do not differ much in their numbers of atoms.
Compound 3 has two hydroxyl groups (3'-OH and 4'-OH) at
the A-ring, in contrast to the A/B-ring compound 2, that has
only one hydroxyl group in position 6. To compare the su-
perimposition of 3 and 1 with the superimposition of 2 and 1,
first only the 3'-OH group of 3 was taken into account (Fig-
ure 19, top). Then, a superimposition was performed by con-
sidering the 4'-OH group of 3 (Figure 19, bottom).

By requiring the 3'-OH group of 3 to be matched onto the
oxygen atom of 1, a better geometric fit of 3 onto 1 is ob-
tained than the geometric fit of 2 and 1 (Figure 19, top, and
Figure 16, bottom). The distance of the corresponding oxy-
gen atoms d(O-O) is 0.47 Å and of the nitrogen atoms d(N-
N) it is 0.95 Å. Thus, important pharmacophore points are
closer in the superimposition of 3 and 1 than in the superim-
position of 2 and 1 (Figure 16, d(O-O): 1.46 Å, and d(N- N):
1.20 Å).

The superimposition of 3 and 1 obtained by requiring the
matching atom pairs to be 1: N2/3: N2 and 1: O1/3: 4’O1 leads
to a higher rms value and, therefore, to a worse geometric fit
than in the previous case when the 3'-O1 atom of 3 is required
to match (rms = 1.13 Å vs 0.72 Å). The distances of the oxy-
gen atoms (d(O-O): 0.74 Å and 1.03 Å) and of the nitrogen
atoms (d(N-N): 0.95 Å and 1.86 Å) are also lower than for
the atom pairing 1: O1/3: 3’O1. In addition, the plane of the
A-biphenyl ring of 3 is more or less perpendicular to the A-
ring plane of the rigid steroidal skeleton of 1 in the case of
requiring the 4'-O1 of 3. This allows the conclusion to be
made that in compound 3 it is the 3'-OH group that is in-
volved in binding.

In order to explore this hypothesis further, the compounds
BW112, 3, (A/C-ring system) and BW13, 2 (A/B-ring sys-
tem) were superimposed, in one case the oxygen atom of the

N1

0.95Å

3'O1

1.03Å

rms = 1.13Å
size = 16

0.47Å

4'O1

4'O1

3'O1

rms = 0.72Å
size = 16

1.86Å

Figure 19 The superimposi-
tion of 1 (rigid) and 3 (flex-
ible). The required matching
atom pairs are marked by a
dashed circle. Top: 1: N2/3:
N2 and 1: O1/3: 3’O1; bottom:
1: N2/3: N2 and 1: O1/3: 4’O1
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3'-OH group of 3 required to match onto the oxygen atom of
2, in the other case, the oxygen atom of the 4'-OH group of 3
requires to be matched onto the oxygen atom of 2. In both
investigations, both molecules 2 and 3 were allowed to be
flexible. These two compounds differ again in their numbers
of atoms.

The first superimposition (Figure 20, top) requires the atom
pairs 2: N1/3: N2 and 2: O1/3: 3’O1, while in the second su-
perimposition (Figure 20, bottom) the atom pairs 2: N1/3: N2

and 2: O1/3: 4’O1 are enforced.
The first superimposition (Figure 20, top) shows a partial

alignment of the biphenyl-C-ring of BW112, 3, onto the 1-
methyl and 2-methylene group of the 3,4-dihydronaphthalene,

2. This presents a rather good geometric fit (rms = 0.57 Å) of
the skeletons and of the oxygen atoms (d(O-O): 0,10 Å), but
also leads to quite a large distance of the nitrogen atoms (d(N-
N): 1.41 Å). A shorter distance of the nitrogen atoms (d(N-
N): 0.21 Å, d(O-O): 0.9 Å) in the second superimposition
(Figure 20, bottom) corresponds to a larger shift (rms = 0.82
Å) in the orientation of the skeletons of both structures. This
fact does not exclude a similar binding mode because, never-
theless, the hydrophobic parts of both structures are aligned
quite well. Again, on the basis of the lower rms we come to
the conclusion that binding occurs through the 3'-OH group
of 3.

0.21Å

rms = 0.57Å
size = 16

0.10Å

1.41Å

N1

3'O1

4'O1

N2

0.90Å

rms = 0.82Å
size = 16

superimposition required matching rms [Å] d(N-N) [Å] d(O-O) [Å]
atom pair

1 with 2 N2-N1, O1-O1 1.14 1.20 1.46
1 with 4 N2-N1, O1-O1 1.20 1.60 1.69
1 with 5 N2-N1, O1-O1 1.34 2.21 1.95
1 with 3 N2-N2, O1-3’O1 0.72 0.95 0.74
1 with 3 N2-N2, O1-4’O1 1.13 1.86 1.03
2 with 3 N1-N2, O1-3’O1 0.57 1.41 0.10
2 with 3 N1-N2, O1-4’O1 0.82 0.21 0.90
4 with 3 N1-N2, O1-3’O1 1.16 1.14 2.00
4 with 3 N1-N2, O1-4’O1 0.52 0.88 0.24
5 with 3 N1-N2, O1-3’O1 1.03 1.54 2.38
5 with 3 N1-N2, O1-4’O1 0.68 0.97 0.49

Table 2 The rms-values of
the calculated superimpo-
sitions of some P450c17-in-
hibitors and the correspond-
ing distances of the N-N and
O-O atom pairs.

Figure 20 The superimpo-
sition of 2 (flexible) and 3
(flexible). The restricted
matching atom pairs are
marked by a dashed circle.
Top: 2: N1/3: N2 and 2: O1/3:
3’O1, bottom: 2: N1/ 3: N2 and
2: O1/3: 4’O1
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Table 2 shows the results of each binary superimposition
of compounds 1, 2, 3, 4, and 5,. In addition, Table 2 includes
the superimpositions of 3 with 4 and 5, which have not yet
been shown before. To evaluate the goodness of the align-
ment, the rms values for a constant substructure size (16 at-
oms) is given. Furthermore, the distances of the correspond-
ing nitrogen and oxygen atom pairs are considered.

The following conclusions are based on the rms values of
the geometric fit and in addition on the distances of the re-
stricted matching atom pairs.

The superimposition of the steroidal template 1 with the
6-substituted 3,4-dihydronaphthalene compound, 2, (rms =
0.72 Å) is worse than the superimposition of 1 with the bi-
phenyl system 3, by restricting the 3'-oxygen atom of 3 (rms
= 0.57 Å). However the alignment of 1 with 2 (rms = 0.72 Å)

is better than the alignment of 1 and 3 by restricting the 4'-
oxygen atom of 3 (rms = 1.13 Å). The alignment of 1 with
the 7- and 5-substituted 3,4-dihydronaphthalene compounds
4 and 5 leads to worse geometric fits than the alignment of
the 1 with the 6-subsituted 3,4-dihydronaphthalene, 2. In
contrast to the superimposition of 3 and 1, the geometric fit
of the superimposition of 3 with both 7- and 5-substituted
3,4-dihydronaphthalene compounds (A/B-ring systems) 4 and
5 is better by restricting the 4'-oxygen atom of 3 (rms = 0.52
Å and 0.68 Å).

In summary, the superimposition of the most active com-
pounds 1 (A/B/C/D-ring system), 2 (A/B-ring system), and 3
(A/C-ring system) show that the biphenyl compounds (A/C-
ring systems) have a binding mode similar to that of the
steroidal compounds (A/B/C/D-ring systems) by coordina-

Figure 21 The result of the
simultaneously superimposi-
tion of imidq, 1 (red), BW112,
3 (green), BW13, 2 (ma-
genta), and BW61, 4 (blue).
The substructure is marked by
gray circles. The matching
atom pairs 1: O1/2: O1/3:
3’O1/4: O1, and 1: N2/3: N2/
2: N1/4: N1 are restricted and
marked by dark gray circles

Figure 22 The result of the
simultaneously superimposi-
tion of imidq, 1 (red), BW112,
3 (green), BW13, 2 (ma-
genta), and BW61, 4 (blue).
The substructure is marked by
gray circles. The matching
atom pairs 1: O1/2: O1/3:
4’O1/4: O1, and 1: N2/3: N2/
2: N1/4: N1 are restricted and
marked by dark gray circles
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tion of the 3'-hydrogen bond acceptor to the receptor binding
pocket. The superimposition of the steroid 1 with the biphe-
nyl compound 3 leads to a better geometric fit than the su-
perimposition with the three dihydronaphthalene compounds
2, 4 and 5. Whereas the geometric fit of the less active com-
pounds 4 and 5 with the rigid skeleton of 1 is worse than in
the geometric fit of the more active compound 2. In the case
of the lowest active compound 5, the geometric fit is again
worse than for compound 4. Thus, a higher deviation in the
fit corresponds to lower activity.

The superimpositions of 3 with 1 and 2 show that the co-
ordination of the 3'-hydrogen bond acceptor of 3 seems to be
the preferred one. On the other hand, the 5- and 7-methoxy
substituted naphthalene compounds 4 and 5, which have a
lower affinity to the enzyme than the 6-substituted naphtha-
lene compound 2, show a better alignment with 3 by enforc-
ing an overlap of the 4'-OH group of 3 than when the 3'-OH
group was used. Thus, no clear decision can be drawn by

only comparing sets of two molecules. We will therefore in-
vestigate the simultaneous superimposition of several mol-
ecules in the next section.

The superimpositions calculated with GAMMA by con-
sidering specific knowledge about the receptor binding pocket
show that binding modes can be predicted even for flexible
compounds. Affinity potentials of compounds without known
biological activity to the P450c17 enzyme can be estimated
by superimposing them onto a compound with a known bio-
logical profile to the P450c17 enzyme. Three different val-
ues are to be evaluated, the rms value of the geometric fit,
the distances of the atoms that coordinate to the central iron
atom of the heme molecule, and the distances of potential
hydrogen bond acceptors.

As of now, only the superimpositions of two molecules
have been investigated. This might not give the full picture
of the pharmacophore as accidental similarities might be
found. A clearer picture of the of the spatial and electronic
requirements of a drug can only be obtained when more lig-
ands are compared much in the same way as a better idea of
requirements for a key to fit into a given lock can be obtained
by comparing more keys. This is explored in the next sec-
tion.

Multiple superimpositions

The simultaneously superimposition of the four highly ac-
tive P450c17 inhibitors 1, 2, 3, and 4 is shown in Figures 21
and 22. The two superimpositions differ in the restriction
imposed on the oxygen atom of compound 3: In Figure 21
the 3'-OH group of 3 was chosen whereas in Figure 22 the 4'-
OH group of 3 was selected. The conformation of 1 was kept
rigid, whereas the molecules 2, 3, and 4 were allowed to be
flexible during the calculation of the superimposition.

In the binary superimposition of 3 and 4 the oxygen atom
of the OMe-group of 4 is better aligned to the 4'-oxygen atom
of 3. Thus, in the simultaneous superimposition, compound
4 fits better than the other compounds when the 4'-oxygen
atom of 3 is used. A comparison of the superimpositions in
Figures 21 and 22 clearly shows that a better geometric fit
can be obtained by requiring the 3'-oxygen atom of 3. The
superimposition that aligns the oxygen of the 3'-OH group
(Figure 21) has an rms value of 0.71 Å, whereas the superim-
position that aligns the oxygen of the 4'-OH shows an rms
value of 1.22 Å. The distance of the oxygen atoms of the
OMe-group of 4 is nearly 2.0 Å to the cluster of the aligned
oxygen atoms of the compounds 1, 2, and 3 in the case of
restricting the 3'-oxygen atom of 3 (Figure 21).

Figure 23 shows the Pareto diagrams of the two
superimpositions of 1, 2, 3, and 4. Again a substructure size
of 16 atoms has been extracted of the GAMMA run. In the
first Pareto diagram (Figure 23, top, 3'-O of 3 is restricted)
the rms value is rather constant when increasing the size of
the substructure. The second Pareto diagram (Figure 23, bot-
tom, 4'-O of 3 is restricted) shows that this superimposition
has a lower geometric fit for all substructure sizes related
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Figure 23 The Pareto diagrams of two superimpositions of
imidq, 1, BW112, 3, BW13, 2, and BW61, 4. Top: restriction
of the 3’O of 3, bottom: restriction of the 3’O of 3
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with a maximum substructure size of only 11 atoms. Sub-
structure sizes higher than 11 atoms could not be found dur-
ing the optimization. This again proves, that the 3'-OH group
of 3 is more favorable for binding to the P450c17 enzyme.
Based on the simultaneous superimposition of four ligands,
we can now clearly come to the conclusion that binding oc-
curs through the 3'-OH group of 3.

Summary

The program GAMMA (genetic algorithm for multiple mol-
ecule alignment) described here can be used to superimpose
and align several structures independently of the conforma-
tion chosen initially. An unlimited number of structures can
be treated. Only one conformation per structure is necessary
and, thus, the program can work even when only one confor-
mation of a compound is stored in a database. The automatic
elucidation of structural similarities has its particular effi-
ciency in a hybrid method, the combination of a genetic al-
gorithm and a numerical optimization method, the directed-
tweak method. The genetic algorithm process leads to an
optimization of the assignment of the atoms in the form of
match lists. An optimization of the geometric fit by adapting
the conformations of molecules to each other is obtained by
the combination of the genetic algorithm with the directed-
tweak technique. The genetic algorithm is further improved
by two additional operators which are tailored to the
superposition problem: the creep and crunch operators. The
problems studied here must optimize several conflicting cri-
teria. Therefore, always a set of so-called Pareto solutions is
obtained at the end of each GA run. During optimization of
the superposition, the conformations of the structures are
adapted to each other.

The program allows one to choose a template structure as
rigid and then adapts the conformation of the other molecules
onto this template. Rotatable bonds are found automatically
or, alternatively, can be selected by the user. Special features
like selecting an atom list that has or should be part of the
match list or defining different matching criteria allow to in-
clude specific knowledge to the pharmacophore search prob-
lem. The calculated maximum common substructure (MCSS)
of a set of three-dimensional structures having the same bio-
logical activity can indicate certain pharmacophore regions
and points.
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Supplementary material available 3D atomic coordinates
for the superimpositions shown in Figures 16, 18, 19 and 20
are available in PDB format.
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